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Abstract

Many social and other networks exhibit stable size scaling relationships, such that features
such as mean degree or reciprocation rates change slowly or are approximately constant as the
number of vertices increases. Statistical network models built on top of simple Bernoulli baseline
(or reference) measures often behave unrealistically in this respect, leading to the development
of sparse reference models that preserve features such as mean degree scaling. In this paper, we
generalize recent work on the micro-foundations of such reference models to the case of sparse
directed graphs with non-vanishing reciprocity, providing a dynamic process interpretation of
the emergence of stable macroscopic behavior.

Keywords: exponential family random graph models, reciprocity, reference measures, social
networks, dynamic processes, contact formation process

1 Introduction

Recent advances in stochastic models for complex networks have provided an increasingly flexi-
ble and powerful “toolkit” for modeling social and other networks, motivating a growing interest
in identifying model classes that generalize well across settings (see e.g. Van Duijn et al., 1999;
Goodreau et al., 2009; Huitsing et al., 2012; McFarland et al., 2014; Schweinberger et al., 2019),
and in linking models for cross-sectional network structure with the generative processes that give
rise to them (e.g. Snijders, 2001; Skvoretz et al., 2004; Butts, 2019). Both issues become increas-
ingly important when attempting to create models that generalize to networks of varying size, as
interactions within large social, biological, or physical systems are generally impeded by geograph-
ical, physical, institutional, or other barriers whose influence on network structure can be profound
(McPherson et al., 2001). Even when such barriers are unobserved - and where explicitly model-
ing them is infeasible - it is often necessary to account for their tacit influence in order to obtain
reasonable model behavior.

Perhaps the most well-known manifestation of this phenomenon is in the scaling of mean degree
with vertex set size (henceforth, N). While a simple baseline model in which each pair of nodes
has some constant probability of being tied would suggest that mean degree should scale linearly
in N , in most systems of interest mean degree tends to be either approximately constant or at
best to scale sublinearly with network size. For example, Figure 1 shows the scaling of density
(red dots) versus N for friendship nominations in schools from wave 1 of the public use sample of
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the AddHealth study (Harris et al., 2009) and radio calls from teams of responders in the 2001
World Trade Center disaster (Butts et al., 2007). While both sets of networks reflect very different
types of social relations, in both cases we see an approximately 1/N relationship between density
and size (95% CIs of power law exponents (-1.12, -1.01) for AddHealth, (-1.07,-0.76) for WTC),
indicating little variation in mean degree over a large range of network sizes. Such scaling is
typical of social networks, as exemplified by the observation that, while the human population
has grown over an order of magnitude since the mid-18th century (Caselli et al., 2006), we have
not seen a 10-fold increase in the average number of personal ties. (Nor do the residents of New
York City (N > 8.6 × 106) have over 10,000 times as many friends as residents of Colerain, NC
(N = 183).) To correctly account for this behavior is the mean degree scaling problem, for which
multiple solutions have been proposed. For instance, limits on the capacity to sustain ties (due e.g.
to time and effort (Mayhew and Levinger, 1976) or cognitive capacity (Dunbar, 1997)) would bound
the maximum degree, and hence lead to an asymptotically constant mean degree for sufficiently
large systems. Alternatively, constraints on interaction opportunities associated with the greater
geographical, institutional, economic, or even cultural dispersion (including intentionally designed
constraints (Galbraith, 1977)) typical of larger social systems have also been suggested as sources
of sparsity (e.g. Blau, 1972; 1977; Carley, 1991; McPherson, 2004; Butts et al., 2012). While both
types of factors are possible (and no doubt present in different settings), the type of underlying
mechanism has important implications for social structure. For instance, Butts (2019) demonstrates
that maximum degree constraints inevitably lead to degree saturation in the large-N limit (i.e.,
nearly all individuals having as many ties as possible at all times), casting doubt on the viability
of this class of mechanisms as an explanation for mean degree scaling in typical social networks.
By contrast, Butts (2019) also shows that a simple model of latent social interaction - the contact
formation process (CFP) - in which tie formation is constrained to transient co-location within
social settings (i.e., foci, per Feld, 1981) is able to account for constant (or, under alternative
assumptions, non-constant) mean degree scaling without saturation effects. The core intuition of
this model is that, in many networks, tie formation requires some form of co-location for interaction
to take place (whether it be a physical location, an organizational co-involvement, or even a region
within a topic space). Movement of individuals between settings may be very rapid compared to the
timescale of network dynamics, such that the migration dynamics are “blurred out” on the network
timescale. However, this unobserved process still leaves its mark on the network structure, in this
case by altering the expected degree. Where the number of social settings scales in proportion to
population size, the expected degree remains constant.

Constant mean degree scaling raises other questions, however. The 1/N density scaling cor-
responding to constant mean degree implies that, in the directed case, reciprocating edges should
become increasingly rare as population size increases. While this may be true of some networks, it
is often counter to what is observed. For instance, we can see from Figure 1 that the probability of
edge reciprocation (the edgewise reciprocity) is nearly constant for both the AddHealth and WTC
radio networks, despite sharply declining density. This is difficult to explain in terms of ad hoc
mutuality effects, as it would require that such effects be distributed in precisely the right way to
balance out density decline; put another way, dyads would have to “know” the size of the network
in which they were embedded, in order to cancel out its effects. While it is possible to construct
models with mutuality effects that are by fiat set to become stronger with N to maintain constant
reciprocity (as was done by Krivitsky and Kolaczyk, 2015), this phenomenological fix does not pro-
vide a mechanistic explanation for where constant reciprocity comes from, or how it can co-exist
with declining density.

In the remainder of this paper, we provide one mechanistic account for the coincidence of
mean degree scaling and constant reciprocity, using a simple extension of the contact formation
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Figure 1: Density and reciprocity versus N for AddHealth friendships (left) and WTC radio calls
(right); dots are observed networks, with lines indicating OLS regressions for each quantity on
log-log scale. In both cases, density falls as approximately 1/N (implying roughly constant mean
degree) while edgewise reciprocity is approximately constant over several orders of magnitude vari-
ation in network size.

process. We characterize the graph distribution arising from this extended CFP, and show how it
can be employed as a reference model for exponential family random graph models (to which other
effects can be added to obtain more complex models); this provides a mechanistic interpretation of
the offset procedure suggested by Krivitsky and Kolaczyk (2015) for preserving reciprocity when
extrapolating ERGMs to networks of increasing size. We explore the degree of timescale separation
required for the underlying migration process to have the desired structural properties, and also
comment on generalizations to alternative assumptions regarding the scaling of social settings with
population.

1.1 Exponential Family Random Graph Models

Exponential family random graph models provide a very general framework for writing probability
distributions on graph sets, and we will employ them here. Given a random graph G with support
G, the probability mass function (pmf) of G in ERGM form is given by

Pr(G = g|θ,X) =
exp(θT t(g,X))h(g,X)∑︁

g′∈G exp(θ
T t(g′, X))h(g′, X)

, (1)

where θ ∈ Rp is a vector of parameters, t : G, X ↦→ Rp is a vector of sufficient statistics encoding
graph properties, X is a covariate set, and h is the reference measure with respect to which the
graph distribution is defined. This form is quite general, and indeed any distribution on finite G can
be written in this manner (albeit not necessarily parsimoniously). Considerable statistical theory
exists regarding inference for θ given observations of G (see e.g. Hunter and Handcock, 2006; Hunter
et al., 2012; Schweinberger and Stewart, 2019; Schweinberger et al., 2019), and various algorithms
for exact (Butts, 2018) or approximate (Snijders, 2002; Morris et al., 2008; Butts, 2015) simulation
of ERGM draws have been developed. Here, however, our focus is on using the ERGM form to
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describe the equilibrium behavior of the extended contact formation process (thus providing a
mechanistically motivated reference model from which more complex models can be constructed).

1.2 Baseline Models and ERGM Reference Measures

The role of h in Equation 1 can be appreciated by taking θ = 0, immediately leading to Pr(G =
g|θ = 0, X) ∝ h(g,X). We can hence view h (together with G) as defining the baseline model
associated with a particular ERGM family, in the sense that any other distribution in the same
family can be viewed as a reweighted (exponentially tilted) or biased version of the baseline model.
Most commonly, h(g,X) is taken to be a constant (i.e., the counting measure), leading to the
uniform distribution on G (a “true” baseline model in the original sense of Mayhew (1984)); where
G is the set of all graphs or digraphs on N vertices, this distribution can also be interpreted in
terms of a process in which each potential edge occurs independently with probability 0.5.

From an interpretative standpoint, it can be useful to broaden the above by including with
h a minimal set of terms (and associated parameters) that are thought to collectively define the
baseline distribution on which the other terms act. Specifically, we may re-write Equation 1 in this
“separated” form as follows:

Pr(G = g|ϕ, θ,X) =
exp(ψT tr(g,X) + θT t(g,X))h(g,X)∑︁

g′∈G exp(ψ
T tr(g′, X) + θT t(g′, X))h(g′, X)

, (2)

where we have identified ψ as reference parameters and tr as the associated statistics. Taking θ = 0
then leads to what we may call the reference model (or reference model family),

Pr(G = g|ϕ, θ = 0, X) =
exp(ψT tr(g,X))h(g,X)∑︁

g′∈G exp(ψ
T tr(g′, X))h(g′, X)

. (3)

The logic of such a parameterization can be appreciated by noting that certain terms (in addition
to choices of reference measure) are immediately motivated by one’s choice of baseline process. For
instance, consider a baseline process in which, for a directed relation on an N -person group, each
person nominates each other person at random with some constant probability p (not necessarily
equal to 0.5). This corresponds to a reference model with h(g,X) ∝ 1, tr(g,X) = te(g) (where te(g)
is the number of edges in g), and ψ = logit(p), i.e. a homogeneous Bernoulli graph with expected
density p. Such a reference model is a natural starting point for e.g., networks within small,
closed group settings in which all individuals are aware of one another and (a priori) anyone could
plausibly nominate anyone else. Additional terms added to this model may then be interpreted in
terms of social forces that act to bias the underlying nomination process.

In addition to motivating certain terms, the baseline process may also motivate particular
interpretations of the reference parameters. For instance, the contact formation process of Butts
(2019) leads to a reference model with h(g,X) = N−te(g), tr(g,X) = te(g), and ψ = log

rfP
rℓ

,
where rf is the tie formation rate, rℓ is the tie loss rate, and P is the mean number of persons per
focus. Although rf , rℓ, and P are typically unknown in inferential settings (ψ estimated via a free
parameter), the process interpretation does allow one to determine the hypothetical impact of e.g.
increasing or decreasing the formation or loss rates, or changing the population density of foci on
a specified model. (For instance, doubling the underlying tie loss rate is equivalent to reducing the
edge parameter by log 2, the consequences of which in a more complex model can be explored via
simulation.)

Finally, we note that the baseline process may clarify which reference model features should be
thought of as belonging to the reference measure, and which should be viewed as belonging to the

4



exponentiated linear predictor. This is less obvious than it may seem, since it is always possible
to fold h into the exponentiated portion of the model by use of offset parameters (i.e., parameters
whose values are fixed). For instance, the sparse graph reference model originally proposed by
Krivitsky et al. (2011) was described in terms of a counting measure ERGM with a − logN offset
to the edge parameter. The same approach was used by Butts and Almquist (2015) for their
generalization to ERGMs with power law mean degree scaling, and by Krivitsky and Kolaczyk
(2015) for their reciprocity and transitivity preserving models. This approach to specification
has the virtue of suggesting a simple implementation vis a vis conventional software tools, and
from a purely phenomenological standpoint is perfectly adequate for most current social science
applications. However, as noted above, this comes at some interpretational cost. In particular, the
reference measure has an important interpretation in terms of the (exponentiated) entropy of the
graph microstate (per Jaynes, 1983), which is distinct from the effects of model terms (which are
analogous to energetic effects, in the sense of internal (as opposed to free) energy). In more intuitive
terms, the underlying process that produces the network may contain hidden degrees of freedom
that create more ways to produce some graphs than others, and this is distinct from the action of
social forces that bias this underlying process towards one or another outcome. For instance, use
of the counting measure implies that there is in essence the same number of “ways” of producing
one graph as any other, and hence that all inequalities in graph probability stem from the action
of social forces. By contrast, the reference model arising from the CFP implies that there are more
ways to obtain a sparse graph than a dense one (in that case, because edge formation requires
vertices to share foci, and there are fewer ways for vertices to be co-located than not), and this
is an inherent contributor to sparsity apart from the action of social forces. Since such inherent
biases can be expected to turn up in any network generated by the same class of processes (while
social forces may vary), it is potentially useful to identify them. Further, such identification can
be critical in non-social settings, where the distinction between entropic and energetic contributors
to structure is well-defined and consequential. In particular, entropic contributions are unaffected
by temperature, while changing the temperature in a physical system has the effect of rescaling ϕ
and θ; ERGMs intended for use at multiple temperatures must hence correctly distinguish between
elements of h and offset terms. (Such an approach has been used e.g. by Grazioli et al. (2019) to
apply ERGMs to the modeling of protein aggregation.) Whether or not the energetic cost of social
structure in literal terms is ultimately quantifiable (and useful) - as argued e.g. by Mayhew et al.
(1995) - remains an open question, but isolating the entropic drivers of structure from those arising
from other sources is without doubt an important theoretical objective.

2 A Contact Formation Process with Reciprocation

As noted, our proximate goal is to construct a simple but plausible “baseline” process that can
account for the co-existence of constant mean degree scaling and constant reciprocity. We propose a
simple extension of the contact formation process proposed by Butts (2019), which can be informally
motivated as follows. We consider our social system to consist of a set of actors that are embedded
within a set of social, institutional, or geographical “locations” that are fixed on the time scale
of network evolution and between which individuals can readily migrate. Following Feld (1981),
we refer to these generalized locations as foci ; while we make no assumptions regarding their
substantive interpretation, foci are assumed to play a critical role in tie formation. In particular,
ties within null dyads can only be formed when both members of the dyads in question reside within
the same focus. Applying this restriction to all tie formation (not only to the first tie within a
dyad) results in a directed version of the CFP proposed by Butts (2019). Here, however, we assume
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that incoming ties themselves constitute a context for tie formation, and hence allow reciprocating
ties to be formed irrespective of the foci in which the respective vertices reside (the distinguishing
feature of the CFPR). Regardless of how they are formed, ties have a constant hazard of dissolution,
and vertices are assumed to migrate between foci at random (carrying their ties with them).

Formally, we define the CFPR as follows. Assume a system of N vertices, V, each of which at
any given moment resides within one of M foci. Let GV be the set of all digraphs on V, and let
FV = {1, . . . ,M}N be the set of all possible assignments of vertices to foci (bearing in mind that
some foci may be empty). The CFPR is a continuous time Markov process on state space GV ×FV ,
whose permissible transitions consist of: (1) adding a directed edge between non-adjacent ordered
pair (i, j) when either (i) i and j reside in the same focus, or (ii) the (j, i) edge exists; (2) removing
an (i, j) edge; and (3) moving a single vertex from its current focus to another. The hazards for
these transitions are determined as follows. Every directed dyad at risk for formation has a constant
hazard rf of forming an edge (with the risk set being the set of non-adjacent (i, j) ordered vertex
pairs such that either j is adjacent to i or i and j occupy the same focus). Likewise, every currently
existing (i, j) edge has a constant hazard rℓ of dissolution (with this being invariant to location or
network structure). Finally, every vertex has a constant hazard rm/(M − 1) of migrating from its
current focus to each other focus (yielding a total per-vertex migration hazard of rm, if we imagine
that with probability 1/M a migrating vertex elects to remain within the same focus).

From these conditions, we may immediately observe that, so long as all hazards are positive and
finite, the CFPR has neither transient nor absorbing states. Its state space is finite and connected
(obviously, we may obtain any combination of graph structure and focus assignments from any
other by a series of movements and edge additions or deletions), and the Markov chain formed
by the above transition rules is non-periodic. It follows then that the CFPR is ergodic, with a
stationary (or equilibrium) distribution to which the system converges. The exact properties of
this distribution depend upon the associated rates, with the migration rate being of particular
importance. As with development of Butts (2019), we are here interested in the fast mixing regime,
in which rm ≫ rf , rℓ. In this limit, migration is much faster than tie formation or dissolution,
with foci representing transient sites of interaction (e.g., meetings or meeting places) rather than
long-term contexts in which individuals are embedded. While the assignment of individuals to foci
is “blurred out” in this regime, the underlying dynamics nevertheless affect network structure, as
we show below.

Event Representation: While the above is one characterization of the CFPR, other equivalent
characterizations can be useful for specific purposes. In particular, in showing the asymptotic
independence of dyads in the fast mixing regime we will make use of an event-based representation
of the CFPR. As before, we define the CFPR as a continuous time process on state space GV ×FV ,
letting G(t) ∈ GV being the state of the network at time t, and F (t) ∈ FV the corresponding vector
of focus assignments. We then associate with each ordered vertex pair (i, j) a set of formation
events and a set of dissolution events, and each vertex/focus pair (i, k) a set of migration events, all
of which occur as Poisson processes. Specifically, the dissolution events for pair (i, j) and migration
events for pair (i, k) occur as homogeneous Poisson processes with respective constant hazards
rℓ and rm/M , for all ordered vertex and vertex/focus pairs (respectively). Formation events for
vertex pair (i, j) occur as an inhomogeneous Poisson process with piecewise constant hazard rf when

F
(t)
i = F

(t)
j or when (j, i) ∈ G(t), and otherwise 0. Under this construction, we may recover the

system state at time t by examining its event history: (i, j) ∈ G(t) if and only if the most recent (i, j)

event was a formation event and F
(t)
i = k if and only if the most recent migration event involving

vertex i was an (i, k) event. Although they can be viewed as a pure mathematical contrivance, we
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may also think of formation events in this construction as representing hypothetical opportunities
for tie formation to occur; such an event creates the corresponding tie if it is not already present,
and otherwise has no effect. Similarly, dissolution events terminate edges that are present, but
otherwise do nothing. Expressing the CFPR in terms of these underlying events facilitates certain
results, as shown below.

2.1 Equilibrium Behavior of the CFPR

We now consider the behavior of the CFPR in equilibrium (i.e., when observed at a random time),
in the fast-mixing regime for which rm ≫ rf , rℓ. In the development below, it will often be
convenient to work with the mean number of vertices per focus, which we denote by P = N/M ; we
are particularly interested in the behavior of systems at constant population density, i.e. for which
P is constant in N . Cases in which P is not constant (i.e., M does not scale linearly in N) are
discussed in section 3.

2.1.1 Expected Dyad Census

We begin by determining the expected dyad census at equilibrium, in the fast-mixing regime.
Denote the expected numbers of mutual, asymmetric, and null dyads in the network at a random
time by Dm, Da, and Dn (respectively). From the definition of the CFPR, we can immediately
observe that edges are lost at constant rate rℓ; thus, mutual dyads must convert to asymmetric dyads
at rate 2rℓ, and asymmetric dyads must likewise convert to null dyads at rate rℓ. Since reciprocation
is always permitted, we can immediately see that asymmetric dyads convert to mutual dyads at
rate rf , irrespective of vertex location. Null conversion, however, is more subtle. For pairs within
the same focus, nulls convert to asymmetrics at rate 2rf , with the conversion rate otherwise being
0. The mean rate of conversion hence depends upon the latent migration process. Since migration
is uniform, we observe that in equilibrium all locations are chosen at random; thus, the chance of
two vertices within a dyad occupying the same focus is 1/M , and the net conversion rate is hence
2/Mrf .

From these conversion rates, we can obtain the expected dyad census. In equilibrium, the
expected gains and losses of mutual dyads must be equal, and hence we can solve for the expected
number of asymmetrics as a function of the expected number of mutuals:

Darf = Dm2rℓ

Da = 2
rℓ
rf
Dm. (4)

Applying the same logic to the gain/loss rates for asymmetric dyads, and substituting from equa-
tion 4 also allows us to solve for the expected number of nulls as a function of the expected number
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of mutuals:

Dm2rℓ +
2

M
rfDn = Darf +Darℓ

= 2
rℓ
rf
Dm(rf + rℓ)

2

M
rfDn = 2

rℓ
rf
Dm(rf + rℓ)−Dm2rℓ

= 2rℓ

[︃(︃
1 +

rℓ
rf

)︃
− 1

]︃
Dm

= 2
r2ℓ
rf
Dm

Dn =M

(︃
rℓ
rf

)︃2

Dm, (5)

where we have used the fact that the expected conversion rate from nulls to asymmetrics in the
fast-migration regime is 2/Mrf .

Since the total number of dyads, D, is fixed, we may now combine equations 4 and 5 to find the
expected number of mutuals in terms of the CFPR parameters (and thereby the rest of the dyad
census). Specifically,

D = Da +Dm +Dn

= 2
rℓ
rf
Dm +Dm +M

(︃
rℓ
rf

)︃2

Dm

= Dm

[︄
1 + 2

rℓ
rf

+M

(︃
rℓ
rf

)︃2
]︄
,

and hence

Dm =
D

1 + 2 rℓ
rf

+M
(︂

rℓ
rf

)︂2 , (6)

Da = 2
rℓ
rf

D

1 + 2 rℓ
rf

+M
(︂

rℓ
rf

)︂2

=
2D

rf
rℓ

+ 2 +M rℓ
rf

, (7)

and

Dn =M

(︃
rℓ
rf

)︃2 D

1 + 2 rℓ
rf

+M
(︂

rℓ
rf

)︂2

=
MD(︂

rf
rℓ

)︂2
+ 2

rf
rℓ

+M
. (8)

8



2.1.2 Expected Degree and Reciprocity

From the dyad census, we can determine how participation in dyad types scales with network size.
For instance, we can see from equation 6 that the expected number of mutuals per vertex is

D

1 + 2 rℓ
rf

+M
(︂

rℓ
rf

)︂2

1

N
=

N(N − 1)/2

1 + 2 rℓ
rf

+ N
P

(︂
rℓ
rf

)︂2

1

N

=
N − 1

2 + 4 rℓ
rf

+ 2N
P

(︂
rℓ
rf

)︂2

−−−−→
N→∞

N

2N
P

(︂
rℓ
rf

)︂2 (9)

=
1

2
P

(︃
rf
rℓ

)︃2

, (10)

showing that the expected number of mutual relationships for an arbitrary vertex is asymptotically
constant in the limit of network size. Likewise for the expected number of asymmetrics per vertex
(using equation 7):

2D
rf
rℓ

+ 2 +M rℓ
rf

1

N
=
N(N − 1)

2

2
rf
rℓ

+ 2 +M rℓ
rf

1

N

=
N − 1

rf
rℓ

+ 2 + N
P

rℓ
rf

−−−−→
N→∞

N
N
P

rℓ
rf

(11)

= P
rf
rℓ
, (12)

which is also constant in N . Since the expected in- and outdegree must be related to the expected
dyad census by d̄ = (2Dm + Da)/N (using standard graph identities), it follows that the mean
degree is asymptotically

lim
N→∞

d̄ = P

(︃
rf
rℓ

)︃2

+ P
rf
rℓ

= P
rf
rℓ

(︃
rf
rℓ

+ 1

)︃
, (13)
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which does not depend on N . Likewise, we can obtain the limiting probability that a randomly
chosen edge will be reciprocated (i.e., edgewise reciprocity) from

Dm

Dm + Da
2

=
1

1 + 1
2
Da
Dm

=

⎡⎢⎣1 + 1

2

2D
rf
rℓ

+ 2 +M rℓ
rf

1 + 2 rℓ
rf

+M
(︂

rℓ
rf

)︂2

D

⎤⎥⎦
−1

=

⎡⎢⎣1 + 1 + 2 rℓ
rf

+M
(︂

rℓ
rf

)︂2

rf
rℓ

+ 2 +M rℓ
rf

⎤⎥⎦
−1

=

⎡⎢⎣1 + 1 + 2 rℓ
rf

+ N
P

(︂
rℓ
rf

)︂2

rf
rℓ

+ 2 + N
P

rℓ
rf

⎤⎥⎦
−1

−−−−→
N→∞

⎡⎢⎣1 + N
P

(︂
rℓ
rf

)︂2

N
P

rℓ
rf

⎤⎥⎦
−1

=

[︃
1 +

rℓ
rf

]︃−1

, (14)

which is also constant in N . (Note that we have in the first step implicitly equated an expectation
of ratios with a ratio of expectations, which can be done here because of the concentration of the
dyad census in the large-N limit. We verify convergence for realistic values of N by simulation in
section 2.2.)

2.1.3 Asymptotic Independence of Dyads

Having shown the limiting behavior of density and reciprocity under the CFPR, we now show
that these fully characterize its behavior in the fast-mixing regime; that is, we show conditional
independence of dyads in the limit as rm ≫ rf , rℓ. Our development here closely follows that
of Butts (2019) for the CFP, with adjustments for the directed case. In particular, we begin by
generalizing a result of Butts (2019) regarding the conditional distribution of vertex co-residence
time, which for convenience we state as a lemma:

Lemma 1. Let G(0) be a random-time realization of a graph arising from a contact formation
process with mixing rate rm, and let i, j be vertices of G. Define [a, b], a < b ≤ 0 to be an interval
prior to realization time, and let Cb

a be the total time within [a, b] during which i and j occupy the
same focus. Then, if Pr(G(0) = g|Cb

a = c) > 0 for all g, c, then Cb
a|G(0) = g converges in probability

to (b− a)/M as rm → ∞.

Proof. Without loss of generality, we fix the location of i as a reference, and consider the total
length of time during the interval [a, b] in which j is in the reference focus. Since migration events
occur as homogeneous Poisson processes with rate rm for each vertex, migration events for vertex
j relative to vertex i’s position occur as a homogeneous Poisson process with rate 2rm (migration
of the reference position being equivalent to migration of j). Since each migration event selects the
destination focus at random from the M that are available, the probability that such an event will
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result in j occupying the reference focus is always 1/M (regardless of j’s starting position). During
a fixed period of duration t = b− a, it follows that the number of events placing j at the reference
position will be distributed as Pois(2trm/M). Each such event will be followed by a co-residence
period that lasts until the next migration event (or the end of the time interval); the sum of these
period lengths is by definition Cb

a. (Note that migration events leaving co-located vertices positions
unchanged can be viewed as “back-to-back” co-residence intervals, and do not harm our analysis.)
As migration events follow a homogeneous Poisson process, it immediately follows that the co-
residence periods are (momentarily setting aside truncation) distributed as iid Exp(2rm), and their
total length is distributed as Gamma(K, 2rm) (with K being the number of intervals). This implies
that the total length of co-residence is a Poisson mixture of gamma deviates. We further observe
that, in the limit as rm → ∞, the length of any given co-residence interval approaches 0 almost
surely, and hence the impact of truncation (which can affect only one such interval) on the total
length of co-residence must also vanish as the migration rate increases. Thus, we are justified in
equating the limiting distribution of Cb

a with the sum of untruncated co-residence intervals. The
limiting expectation of Cb

a can then be obtained from the Poisson mixture,

ECb
a →

∞∑︂
k=0

Pois(k|2trm/M)
k

2rm

=
t

M
,

where we have used the fact that the kth mixture component has expectation k/(2rM ). As the kth
component has variance k/(2rm)2, we may also employ standard properties of discrete mixtures to
obtain the limiting variance,

Var(Cb
a) →

∞∑︂
k=0

Pois(k|2trm/M)

[︄(︃
k

2rm
− t

M

)︃2

+
k

(2rm)2

]︄

=
∞∑︂
k=0

(2trm/M)2 exp(−2trm/M)

k!

k + (k − 2trm/M)2

4r2m

=
t

rmM
.

Since Var(Cb
a) → 0 as rm → ∞, Cb

a → t/M in mean square (and hence in probability) in the
fast-migration limit.

Now we consider the implications of conditioning on G. By Bayes’s theorem,

p(Cb
a = c|G(0) = g) ∝ Pr(G(0) = g|Cb

a = c)p(Cb
a = c),

with p(Cb
a) being the marginal probability density of Cb

a. From the above, however, p(Cb
a = c) → 0

for all c ̸= t/M as rm → ∞, and since by assumption Pr(G(0) = g|Cb
a = c) ∈ (0, 1) for all g, c it

follows that Cb
a|G(0) = g converges in probability to a degenerate distribution centered at (b−a)/M

in the limit of increasing migration rate.

The central implication of Lemma 1 is that, under extremely broad conditions, sufficiently fast
migration rates will remove any information carried by network structure regarding vertex position
arbitrarily quickly. This leads to edgewise independence under the CFP, and can be employed to
show independence of dyads under the CFPR as follows.
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Theorem 1. Let G(0) be a random-time realization of a graph arising under a contact formation
process with reciprocity, with adjacency matrix Y , and let (i, j), (k, ℓ) be vertex pairs within G such
that (i, j) ̸= (k, ℓ) and (i, j) ̸= (ℓ, k). Then Yij ⊥ Ykℓ, in the limit as rm → ∞.

Proof. First, observe that the i, j dyad has four states (which we will here represent in terms of
(Yij , Yji) pairs as (0,0), (0,1), (1,0), and (1,1)). We prove asymptotic independence of the i, j dyad
from the (k, ℓ) edge variable by showing that the transition rates between i, j dyad states become
invariant with respect to the current state of Ykℓ as rm → ∞, for any prior time period.

We begin by noting that all but two transitions rates trivially satisfy this invariance: from the
definition of the CFPR, it immediately follows that (0, 1) → (1, 1) and (1, 0) → (1, 1) occur with
fixed rate rf , and that the four transitions (0, 1) → (0, 0), (1, 0) → (0, 0), (1, 1) → (1, 0), and
(1, 1) → (0, 1) occur with fixed rate rℓ. This leaves us with (0, 0) → (1, 0) and (0, 0) → (0, 1).
Consider the former. The probability of such a transition occuring within some arbitrary interval
[a, b] with a < b ≤ 0 (given that we begin in state (0,0) at time a) is rfC

b
a|Ykℓ, where Cb

a is
the total amount of time within [a, b] in which i and j reside in the same focus. By Lemma 1,
Cb
a|Ykℓ → (b − a)/M as rm → ∞, which is invariant to Ykℓ. By symmetry, this result also holds

(mutatis mutandis) for the (0, 0) → (0, 1) transition.
Given that the probability of an i, j dyad transition for any previous [a, b] interval is invariant

to the time 0 state of Ykℓ (whatever state the dyad itself happens to be in), it follows that the state
of the dyad at time 0 cannot depend on Yk,ℓ. Thus, in the limit as rm → ∞, Yij is independent of
Ykℓ.

The intuition behind Theorem 1 is fairly simple: edges can only influence formation events
within dyads, implying that the only remaining source of dependence between edges in different
dyads must arise from implicit information regarding vertex co-residence embedded in the edge
structure. However, Lemma 1 tells us that (in the fast-migration limit) this information washes
out arbitrarily fast, and hence dyads must become independent as rm diverges. This is the same
mechanism that produces independence in the undirected CFP (and, though we do not show it
here, it is trivially true for the directed CFP without reciprocity as well).

2.1.4 ERGM Representation

Since the equilibrium graph distribution from the CFPR in the fast-mixing limit is homogeneous
with dyadic independence, it follows from the Hammersley-Clifford theorem that it has an ERGM
representation in terms of counts of edges and mutuals (see Pattison and Robins, 2002). To find
the associated parameter values from the CFPR parameters, we proceed as follows.

First, to obtain the edge parameter, we consider the conditional odds of an (i, j) edge without
an incoming reciprocated tie. To simplify notation, we write edge states in terms of the realized
adjacency matrix, Y , and introduce indicator variables for dyadic states. Specifically, we define Aij

to be an indicator for the i, j dyad being dyadic, Mij for its being mutual, and Nij for its being null.
With this notation, the conditional probability of an unreciprocated (i, j) edge in the fast-mixing
limit is seen to be

Pr(Aij |Yji = 0) =
Pr(Yji = 0|Aij) Pr(Aij)

Pr(Yji = 0|Aij) Pr(Aij) + Pr(Yji = 0|Nij) Pr(Nij)

=
1

2

Da
D

1
2
Da
D + 1Dn

D

=
1

1 + 2Dn
Da

(15)
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and thus the conditional odds of an edge given non-reciprocation are

Pr(Yij = 1|Yji = 0)

Pr(Yij = 0|Yji = 0)
=

1

1 + 2Dn
Da

1 + 2Dn
Da

2Dn
Da

=
1

2

Da

Dn

=
1

2

2D
rf
rℓ

+ 2 +M rℓ
rf

⎡⎢⎣ MD(︂
rf
rℓ

)︂2
+ 2

rf
rℓ

+M

⎤⎥⎦
−1

=
1

rf
rℓ

+ 2 +M rℓ
rf

⎡⎢⎣ 1(︂
rf
rℓ

)︂2
/M + 2

M
rf
rℓ

+ 1

⎤⎥⎦
−1

=

(︂
rf
rℓ

)︂2
/M + 2

M
rf
rℓ

+ 1
rf
rℓ

+ 2 +M rℓ
rf

−−−−→
N→∞

1
N
P

rℓ
rf

=
P

N

rf
rℓ
, (16)

implying that the edge parameter in the large-N , fast-mixing case must be

θe = log

(︃
P
rf
rℓ

)︃
− logN, (17)

where we are using the fact that, in ERGM form, the edge parameter in an edge/mutual model
must be the logit of the conditional probability of an unreciprocated edge.

To obtain the mutuality parameter, we now consider the probability of an (i, j) tie given an
incoming reciprocated edge in the fast-mixing limit:

Pr(Mij |Yji = 1) =
Pr(Yji = 1|Mij) Pr(Mij)

Pr(Yji = 1|Mij) Pr(Mij) + Pr(Yji = 1|Aij) Pr(Aij)

=
Dm
D

Dm
D + 1

2
Da
D

=

[︃
1 +

1

2

Da

Dm

]︃−1

. (18)
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The odds of an edge given reciprocation are hence

Pr(Yij = 1|Yji = 1)

Pr(Yij = 0|Yji = 1)
=

1

1 + 1
2
Da
Dm

1 + 1
2
Da
Dm

1
2
Da
Dm

= 2
Dm

Da

=
2D

1 + 2 rℓ
rf

+M
(︂

rℓ
rf

)︂2

[︃
2D

rf/rℓ + 2 +Mrℓ/rf

]︃−1

=
rf/rℓ + 2 +Mrℓ/rf

1 + 2rℓ/rf +M(rℓ/rf )2

−−−−→
N→∞

Mrℓ/rf
M(rℓ/rf )2

= rf/rℓ, (19)

and the mutuality parameter in the large-N , fast-mixing limit must therefore be

θm = log[rf/rℓ]− θe

= log[rf/rℓ]− log[Prf/rℓ] + logN

= − logP + logN. (20)

Putting this all together, and moving terms involving N to the reference measure, we obtain
the reference model

ψe = log[Prf/rℓ] (21)

ψm = − logP (22)

h(y) = N tm(y)−te(y). (23)

It is noteworthy that using this reference model together with free parameters for edges and
mutuals leads to a model family equivalent to the offset family proposed by Krivitsky and Kolaczyk
(2015) for preserving reciprocity and mean degree in large networks. Our development thus provides
a mechanistic interpretation for the offset model in terms of a contact formation process; we consider
additional substantive implications below.

2.2 Requirements for Time Scale Separation

In section 2.1, we obtained exact expressions for the behavior of the CFPR in the large-N , fast-
mixing limit. One may reasonably ask, however, how fast the migration rate must be (relative to rf
and rℓ) for these expressions to apply. To investigate this, we simulate draws from the CFPR with
varying migration rates, examining the properties of the resulting networks. For our simulation
study, we employ a full factorial design with treatments N ∈ (50, 100, 200, 400), P ∈ (5, 10, 25),
and log5rm ∈ (−4,−3, . . . , 3, 4) (500 replicate draws per condition). For all draws we take rf = 1,
rℓ = 5, and simulate for 100 time units (the resulting draw being the final system state); simulations
are initialized with homogeneous Bernoulli graphs at the limiting expected density, with random
assignment of vertices to foci. Simulations and analyses were performed using a combination of
custom scripts and tools from the sna package for the R statistical computing system (Butts, 2008).
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To begin, we consider the time scale required for effective convergence of mean degree and
reciprocity to the asymptotic limit. Figure 2 shows the variation in mean degree by P and rm
for the largest simulated treatment (N = 400), together with theoretical limits (dotted lines) for
the slow and fast mixing regimes respectively. These results mirror those seen for the undirected
CFP in Butts (2019), with excellent convergence to the fast-mixing limit when rm is roughly two
orders of magnitude faster than the edge formation/loss rates. As with the CFP case, we see little
if any impact of P on convergence. Turning to reciprocity, figure 3 shows mean reciprocity by rm
for the full range of simulated cases. For comparison, we also include simulations from a directed
CFP without reciprocation (i.e., the original CFP, but applied to directed rather than undirected
edges). Interestingly, we observe that all models produce similar behavior in the slow mixing case:
this is because (1) migration plays no role here (and hence there is no excess edge formation due
to closure of dyads that span foci), and (2) all scenarios employed here have the same expected
density in the slow mixing limit. The difference between the CFPR and the CFP becomes evident
when the mixing rate increases. Under fast mixing, the reciprocation rate under the CFP falls
because vertices are less frequently co-located with their neighbors. Under the CFPR, however,
edgewise reciprocity holds constant. Note that, unlike mean degree, reciprocity preservation holds
at all mixing rates: this is because the CFPR acts to nullify the impact of foci on reciprocation
opportunity, decoupling the migration process from reciprocation altogether. (Compare with the
use of the mutuality offset to nullify the effect of the edge offset in the development of Krivitsky
and Kolaczyk (2015).)

Beyond proper scaling of mean degree and reciprocity, we also wish to determine the migration
rate needed for the approximation of dyadic independence to hold. To assess this, we consider
the difference between the expected triad census obtained under the CFPR (and, for comparison,
directed CFP) under each condition and the census that would be obtained under a corresponding
u|man model with the same dyad frequencies. This test (which generalizes the procedure used in
Butts (2019)) is motivated by the observation that in the slow mixing regime, co-presence within
foci induces transitive closure in the underlying semigraph: if i has non-null dyads with j and k,
then i, j, and k are likely to have recently occupied a common focus, making it more likely that
the {j, k} dyad is also non-null. (Indeed, the attenuation of this effect under fast mixing is key to
Theorem 1.) The use of the triad census to detect local dependence can also be motivated by the
relationship between local (Markov graph) dependence and triadic structure (Frank and Strauss,
1986).

To test for triadic dependence, we take the mean triad census over all replications in each
condition, repeating this process for 5,000 draws from the u|man distribution with expected dyad
census equal to the mean dyad census from the contact process simulations. We then calculate
Hotelling’s T 2 (a multivariate generalization of the t statistic) for the contact process triad census
versus the corresponding u|man census in each condition. Figure 4 shows the resulting T 2 values
by condition and model, as a function of migration rate. Unsurprisingly, the presence of latent
foci introduce clustering at low rm, resulting in a triad census that deviates substantially from
what would be obtained under dyadic independence. As the mixing rate increases, however, dyadic
independence weakens, and the triad census converges to the u|man limit. In particular, once rm
is approximately two orders of magnitude greater than the formation and dissolution rates, we see
little to no significant deviation from dyadic independence. We also note that the directed CFP
and the CFPR behave quite similarly, with no obvious impact of adding reciprocation opportunities
to the base CFP on the convergence rate. By contrast, higher values of N and P are associated
with somewhat slower convergence at low rm, though all conditions seem to collapse rapidly to the
independent limit by around rm = 100.
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Figure 2: Simulated mean degree (heavy lines) and theoretical limits (dotted horizontal lines) as a
function of rm and P for constant N and formation/dissolution rates (N = 400, rf = 1, rℓ = 5);
95% confidence intervals for the simulation mean are too narrow to be visible. Effective time scale
separation is achieved by rm > 100 (dotted vertical line).

3 “Pure” Focus Parameterization

We have generally assumed that, as population increases, the number of foci occupied also increases
so as to maintain constant population density (i.e., constant P ). This is a plausible assumption in
many cases, but is not essential; alternative assumptions regarding the scaling of focus count with
N can be employed, resulting in different mean-degree scaling. For this purpose, it may be more
useful to work with an alternative specification of the reference model that removes P entirely,
leaving us with a formulation in terms of M alone:

ψe = log[rf/rℓ]

ψm = 0

h(y) =M tm(y)−te(y). (24)

This formulation is convenient in providing a helpful (if somewhat oversimplified) intuition connect-
ing the CFPR migration process to the resulting baseline graph distribution, and in highlighting
the difference between the CFP and the CFPR. Intuitively, a basic feature of the CFP is that tie
formation requires both parties to be within the same focus. In equilibrium, the chance of finding
two vertices in the same focus is 1/M . For a graph with te(y) edges, this must obviously have
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Figure 3: Simulated mean edgewise reciprocity by mixing rate, for different N,P conditions (color)
and process types (point shape) at constant formation/dissolution rates (rf = 1, rℓ = 5); shaded
areas indicate 95% confidence intervals. At low mixing rates, reciprocity rates for all models
correspond to the common limiting density. Under fast mixing, reciprocity falls in the regular CFP
conditions (triangles) while remaining constant under all CFPR conditions (circles).

happened te(y) times; if we naively treat these as independent events (appealing to the assumption
of fast mixing) then this suggests a reference measure that scales as M−te(y). This is indeed a valid
expression for the reference measure arising from a pure CFP, and the intuition carries. In the case
of the CFPR, this requirement of co-presence is released for reciprocating edges, of which there are
tm(y). Thus, the same intuition would suggest that we simply deduct this number from the number
of required co-incidence events, leading to a reference measure that scales as M tm(y)−te(y). This
is precisely what we obtain in equation 24, and the intuitive answer is again correct. As we have
seen, a rigorous development of the reference measure is considerably more involved than this naive
intuition would suggest, and such arguments cannot be relied upon ex ante to obtain expressions
for model behavior. However, the core insight of the intuitive argument regarding the impact of
foci on edge probability in the CFP and CFPR is correct, and it may hence be helpful as an aid to
interpretation.

3.1 M Scaling for Spatial Systems

Note that, as M is not in general known in empirical settings, some functional form for it in terms
of N must be assumed (e.g., the linear form used elsewhere in this paper). In some settings, there
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may be a natural choice in this regard. For instance, consider a spatial system with volume V and
“concentration” (i.e., spatial population density) C, with some v being the volume of the largest
volume element over which ties can be formed. In this case, it is obvious that N = CV and
M = V/v, giving us

h(y) = (V/v)tm(y)−te(y).

This development makes no particular assumptions about dimensionality, but we can easily gener-
alize this to e.g. a d-dimensional hypercube of length L, with l being the side length of the critical
volume element. Then V = Ld, v = ld, and

h(y) = (L/l)d(tm(y)−te(y)).

From this it becomes possible to predict changes in network structure arising from changing the
range over which vertices can interact, the scale of the system as a whole, or even the dimensionality
of the system (possibly relevant in the context of Blau spaces). Similar developments are possible
for other classes of systems.

3.2 M Scaling for Non-constant Mean Degree

Butts and Almquist (2015) provide a phenomenological treatment of correction for mean degree
scaling of the form d̄ ∝ Nγ , which takes the Bernoulli baseline (γ = 1) and Krivitsky reference
(γ = 0) as special cases while also accommodating phenomena such as so-called1 “power law
densification” (Leskovec et al., 2007). We can derive the equivalent mechanistic conditions required
for this phenomenon under the CFPR by exploiting equation 13:

Nγ ∝ P
rf
rl

(︃
rf
rl

+ 1

)︃
=
N

M

rf
rl

(︃
rf
rl

+ 1

)︃
.

Choosing M = N1−γ leads to

lim
N→∞

d̄ = Nγ rf
rl

(︃
rf
rl

+ 1

)︃
,

as desired. We can also verify from this that the Bernoulli baseline (counting measure) implies
M = 1 (hence, no migration process) and the constant mean degree scaling implies M ∝ N (as has
been our focus in this paper). More generally, focus counts that scale sublinearly (e.g., M ∝ Nα,
for α ∈ (0, 1)) will induce “power law densificiation” in the sense of (Leskovec et al., 2007). We also
observe from this result that settings in which the number of foci grows supralinearly in population
size would be expected to result in “super-sparse” networks for which mean degree itself declines
in N . The existence of such settings is an interesting empirical question.

4 Conclusion

In directed relations, we often see edge reciprocation rates that remain constant or nearly constant
as N increases, even while density falls. Here, we have provided a simple extension of the contact

1Contrary to what the name implies, networks undergoing “power law densification” are actually growing more
sparse. They are, however, doing so more slowly than they would under constant mean degree.
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formation process that provides a mechanistic account of the phenomenon while also leading to
a well-characterized family of graph distributions that can serve as the starting point for more
complex model building. As with the original CFP, we find that migration rates roughly two
orders of magnitude faster than tie formation/loss rates are sufficient for timescale separation. For
social ties with durations on the order of months, this implies CFP foci with typical residence times
on the order of hours or less (e.g., meeting or gathering places, discussion settings or small group
interactions, etc.). For longer-term ties with durations on the order of years, correspondingly longer
residence times (e.g., on the order of days or weeks) become feasible. These time periods are long
enough to cover a wide range of transient settings (both physical and virtual) in which individuals
meet, interact, and potentially initiate social relationships.

Although constant mean degree scaling is often a good starting assumption for social networks,
other options are also possible. This is easily explored under the CFP and CFPR by relaxing the
convenient assumption that P is constant in N . Here, we noted how such relaxations can be used
to incorporate a priori theories about how M scales with N , or alternately to adjust for different
types of mean degree scaling. Further work on factors that might be expected to alter the richness
of the social ecology (and hence M) could be helpful in suggesting additional regimes for further
exploration.

Finally, we note that the specific mechanism invoked in the CFPR to explain constant recipro-
cation - that a nomination by alter always leaves alter an available target for nomination by ego
- is not the only means by which reciprocity could be sustained, nor is it necessarily active in all
settings. For instance, in a “blind” nomination context in which ego cannot necessarily be assumed
to know who nominates him or her, it is more natural to assume a CFP baseline than a CFPR
baseline. Contact formation is only one of many types of micro-level processes that can lead to
social structure, and development of alternative models would give us a richer set of options for
explaining the regularities of social and other networks.
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Figure 4: Convergence of the triad census to expectations under dyadic independence, as a function
of rm at constant formation/dissolution rates (rf = 1, rℓ = 5). Lines show Hotelling T 2 values for
the triad census under simulated networks in each condition versus a corresponding u|man sample;
colors indicate C,P condition, with process type indicated by point shape. Shaded area and
horizontal line shows threshold for significance at the 0.05 level. Deviations from the independent
dyad model are minimal beyond rm > 100 (dotted vertical line) for both CFP and CFPR.
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